The hydrostatic approximation for the primitive equations by the scaled Navier–Stokes equations under the no-slip boundary condition

نویسندگان

چکیده

In this paper, we justify the hydrostatic approximation of primitive equations in maximal $$L^p$$ - $$L^q$$ -settings three-dimensional layer domain $$\varOmega = \mathbb {T} ^2 \times (-1, 1)$$ under no-slip (Dirichlet) boundary condition any time interval (0, T) for $$T>0$$ . We show that solution to $$\epsilon $$ -scaled Navier–Stokes with Besov initial data $$u_0 \in B^{s}_{q,p}(\varOmega )$$ $$s > 2 2/p + 1/ q$$ converges same $$\mathbb {E}_1 (T) W^{1, p}(0, T ; L^q (\varOmega )) \cap L^p(0, W^{2, q} order $$O(\epsilon , where $$(p,q) (1,\infty )^2$$ satisfies \frac{1}{p} \le \min ( 1 1/q, 3/2 2/q ) and has length scale. The global well-posedness scaled by (T)$$ is also proved sufficiently small >0$$ Note $$T \infty included.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

study of cohesive devices in the textbook of english for the students of apsychology by rastegarpour

this study investigates the cohesive devices used in the textbook of english for the students of psychology. the research questions and hypotheses in the present study are based on what frequency and distribution of grammatical and lexical cohesive devices are. then, to answer the questions all grammatical and lexical cohesive devices in reading comprehension passages from 6 units of 21units th...

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

On the Time Approximation of the Stokes Equations with Slip Boundary Condition

This work is concerned with the numerical approximation of the unsteady Stokes flow of a viscous incompressible fluid driven by a threshold slip boundary condition of friction type. The continuous problem is formulated as variational inequality, which is next discretize in time based on backward Euler’s scheme. We prove existence and uniqueness of the solution of the time discrete problem by me...

متن کامل

A spectral mimetic least-squares method for the Stokes equations with no-slip boundary condition

Formulation of locally conservative least-squares finite element methods (LSFEM) for the Stokes equations with the no-slip boundary condition has been a long standing problem. Existing LSFEMs that yield exactly divergence free velocities require nonstandard boundary conditions [3], while methods that admit the no-slip condition satisfy the incompressibility equation only approximately [4, Chapt...

متن کامل

the search for the self in becketts theatre: waiting for godot and endgame

this thesis is based upon the works of samuel beckett. one of the greatest writers of contemporary literature. here, i have tried to focus on one of the main themes in becketts works: the search for the real "me" or the real self, which is not only a problem to be solved for beckett man but also for each of us. i have tried to show becketts techniques in approaching this unattainable goal, base...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Evolution Equations

سال: 2021

ISSN: ['1424-3199', '1424-3202']

DOI: https://doi.org/10.1007/s00028-021-00674-6